Emptiness problems for integer circuits
نویسندگان
چکیده
منابع مشابه
Emptiness Problems for Integer Circuits
We study the computational complexity of emptiness problems for circuits over sets of natural numbers with the operations union, intersection, complement, addition, and multiplication. For most settings of allowed operations we precisely characterize the complexity in terms of completeness for classes like NL, NP, and PSPACE. The case where intersection, addition, and multiplication is allowed ...
متن کاملEmptiness Problems for Distributed Automata
We investigate the decidability of the emptiness problem for three classes of distributed automata. These devices operate on finite directed graphs, acting as networks of identical finite-state machines that communicate in an infinite sequence of synchronous rounds. The problem is shown to be decidable in LOGSPACE for a class of forgetful automata, where the nodes see the messages received from...
متن کاملA new approach for solving neutrosophic integer programming problems
Linear programming is one of the most important usages of operation research methods in real life, that includes of one objective function and one or several constraints which can be in the form of equality and inequality. Most of the problems in the real world are include of inconsistent and astute uncertainty, because of this reason we can’t obtain the optimal solution easily. In this paper, ...
متن کاملEmptiness Problems of eNCE Graph Languages
We consider the complexity of the emptiness problem for various classes of graph languages deened by eNCE (edge label neighborhood controlled embedding) graph grammars. In particular, we show that the emptiness problem is undecidable for general eNCE graph grammars, DEXPTIME-complete for connuent and boundary eNCE graph grammars, PSPACE-complete for linear eNCE graph grammars, NL-complete for d...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2020
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2020.03.023